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The Finite-Difference Time-Domain (FDTD) method has shownto be an excellent tool for solving the
inhomogeneous moving medium sound propagation equations outdoors. Due to its nature, it can easily take
care of complex wind and temperature profiles, typically found in outdoor situations. In its conventional
form, the FDTD uses a uniform Cartesian grid. For propagation over an undulating terrain these grids need
to be refined beyond the acoustic limit to allow accurate description of the ground surface. This increases
memory requirements and cpu-time considerably. In this paper, we will discuss how these computational
requirements can be relaxed to allow these simulations to berun on lower end machines.
The technique that is proposed contains two steps. The first part consists in introducing an optimized non-
Cartesian FDTD scheme which uses a structured grid that follows the undulations of the terrain. It is shown
that for the problem at hand, this general approach can be simplified keeping the increase in cpu-time per
grid cell low. It will be shown that the approach allows us to keep the number of grid cells per wavelength
low, while avoiding spurious reflections and diffractions.Thus, both memory requirements and computation
time are considerably lowered.
The proposed approach has the additional advantage that it allows more easily to implement a grid co-
moving with essentially unidirectional waves. Columns of the Cartesian grid are activated based on a
pressure threshold. This is a simple but effective approachto limit the computing resources to the active
areas, while retaining an accurate result.

1 Introduction

Detailed numerical modeling of outdoor sound propaga-
tion has gained interest recently both from an environ-
mental and from a military point of view. The Finite-
Difference Time-Domain (FDTD) technique has shown
to be interesting to simulate sound propagation in an in-
homogeneous moving medium [1, 2, 3]. It turns out to
be considerably more efficient if a structured cartesian
grid can be used. Although such a grid allows to discre-
tise most buildings, noise barriers, etc. very well, it is
inefficient to model propagation over an undulating ter-
rain. In this paper, we propose a structured non-cartesian
grid FDTD as a possible solution. This approach has the
additional advantage that it allows to use a moving grid-
window. This keeps memory usage within limits even
for studying very long range propagation. The model is
compared to a grid-refined cartesian approach and a Gen-
eralized Terrain PE (GTPE) simulation [4, 5].

2 Inhomogeneous moving medium
sound propagation equations

The following set of linearized equations is commonly
used for time-domain simulations outdoors. Sound
propagation is described in an inhomogeneous moving
medium. The main effects of wind flow outdoors (con-
vection, refraction and scattering) and refraction by tem-

perature gradients are accounted for in detail. Atmo-
spheric absorption is not included.

∂p
∂t

+ v0 · ∇p + c2ρ0∇ · v = 0 (1a)
∂v
∂t

+ (v0 · ∇) · v + (v · ∇)v0 + 1

ρ0

∇p = 0 (1b)

In the previous equations,v is the particle velocity,v0

is the background flow velocity,p is the acoustic pres-
sure,ρ0 is the ambient mass density,c is the adiabatic
speed of sound andt is time. The integration of these
equations is performed with the Finite-Difference Time-
Domain (FDTD) method. A staggered spatial grid is
used in combination with the prediction-step staggered-
in-time (PSIT) approach [2]. The background flow veloc-
ities that will be used in this paper are sufficiently small
to perform stable and accurate calculations with the PSIT
scheme. The following notations are used:
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The discretised pressures are defined at the integer spaces
and time indices, the velocity components are put in be-
tween the latter. The staggered-in-time approach allows
for in-place computation, which is computational effi-
cient. The acoustic velocities and pressures are updated
in an alternatingleapfrog manner.
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3 Curvilinear Coordinates

The grid resolution required for FDTD simulations de-
pends on the wavelength of interest and the detail re-
quired to describe the structure. To model the smooth
surface of an undulating terrain accurately, a grid resolu-
tion beyond the acoustic limit of ten cells per wavelength
is required.

To reduce the required grid resolution, a structured grid
that follows the undulations of the terrain can be applied.
The equations must therefore be rewritten in a curvilinear
coordinate system [6, 7]. It will be shown that for the
problem at hand, this general approach can be simplified
to minimalize the computational overhead.

For the purpose of this paper, a non-orthonormal grid is
constructed that is skewed to follow the undulationsh (x)
of the terrain.1x and1y are the base vectors of the un-
derlying orthonormal reference grid,ux anduy are the
coordinates in the curvilinear grid:

r (ux, uy) = x (ux, uy)1x + y (ux, uy)1y (3)

x (ux, uy) = ux (4a)

y (ux, uy) = uy + h (ux) (4b)

To this non-orthogonal coordinate system, a covariant
base can be defined so that a vector field such as the parti-
cle velocity fieldv can be split in covariant components:

Ax =
∂r

∂ux

= 1x +
dh

dux

1y (5a)

Ay =
∂r

∂uy

= 1y (5b)

v = vxAx + vyAy (6)

a
⊥ is defined as the result of rotatinga 90◦ counterclock-

wise:
a
⊥ = − (a · 1y)1x + (a · 1x)1y (7)

This allows to write a property that expresses that the area
A of the unit cell is constant:

A = A
⊥

x · Ay =

(

−
dh

dux

1x + 1y

)

· 1y = 1 (8)

A contravariant base is also associated to the curvilinear
grid, and a vectorv can be split in its contravariant com-
ponents as well:
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v = vx
A

x + vy
A

y (10)

A property of the contravariant base is that it can be used
to obtain the covariant components of a vector, and vice
versa:

vx = v · Ax vy = v · Ay (11a)

vx = v · Ax vy = v · Ay (11b)

From this, a metric tensorg to convert contra- to covariant
coordinates can be defined as:

gαβ = A
α · Aβ (12)
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It is interesting to note that the co- and contravariant bases
and metric tensor are all independent ofuy andt. This
allows for an efficient implementation because a single
value can be calculated, stored and used per column.

Differential operators in curvilinear coordinates are ex-
panded as:
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4 Terrain FDTD

To implement FDTD over an undulating terrain, the
curvilinear differential operators (14) must be applied to
the sound propagation equations (1).

4.1 Pressure equation

The pressure equation (1a) in curvilinear coordinates is
expanded to:
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wherevx, vy, v0,x and v0,y are the covariant velocity
components.

4.2 Contravariant velocity equations

From (14a) it follows that the velocity equations must be
written using the contravariant velocity components. For
thex component of velocity we obtain:

v
x,l+ 1

2

i+ 1

2
,j

= v
x,l− 1

2

i+ 1

2
,j
−

∆t

ρ0

∂

∂ux

pl
i+ 1

2
,j

− v0,i+ 1

2
,j · ∇v

x,l

p,i+ 1

2
,j

− vp
x,l

,i+ 1

2
,j
· ∇vx

0,i+ 1

2
,j

(17)

with

∂

∂ux

pl
i+ 1

2
,j

=
pl

i+1,j − pl
i,j

∆ux

(18a)

v0,i+ 1

2
,j · ∇v

x,l

p,i+ 1

2
,j

= v0,x,i+ 1

2
,j

v
x,l

p,i+ 3

2
,j
− v

x,l

p,i− 1

2
,j

2∆ux

+

∑1

µ=0

∑1

ν=0
v0,y,i+µ,j+ν− 1

2

4
·

v
x,l

p,i+ 1

2
,j+1

− v
x,l

p,i− 1

2
,j+1

2∆uy

(18b)

vp
x,l

,i+ 1

2
,j
· ∇v0,i+ 1

2
,j = v

x,l

p,x,i+ 1

2
,j

v0,i+ 3

2
,j − v0,i− 1

2
,j

2∆ux

+

∑1

µ=0

∑1

ν=0
v

x,l

p,y,i+µ,j+ν− 1

2

4
·

v0,i+ 1

2
,j+1 − v0,i− 1

2
,j+1

2∆uy

(18c)

v
x,l

p,i+ 1

2
,j

= v
x,l− 1

2

i+ 1

2
,j
−

∆t

2ρ0

∂

∂ux

pl
i+ 1

2
,j

(18d)

wherevx, vy, vx
p andvy

p are contravariant velocity com-
ponents.

4.3 Velocity transformation

The pressure equation (15) uses the covariant velocity
components, while the velocity equation (17) obtains
contravariant components. Toclose the loop, a final
transformation from contra- to covariant components is
needed:

v
l+ 1

2

x,i+ 1

2
,j

= gxx
i+ 1

2

v
x,l+ 1

2

i+ 1

2
,j

+ g
xy

i+ 1

2

v
y,l+ 1

2

i+ 1

2
,j

(19a)

v
l+ 1

2

y,i,j+ 1

2

= g
yx
i v

x,l+ 1

2

i,j+ 1

2

+ g
yy
i v

y,l+ 1

2

i,j+ 1

2

(19b)

v
y,l+ 1

2

i+ 1

2
,j

andv
x,l+ 1

2

i,j+ 1

2

are not in the grid as such, and must

be linearly interpolated from the four closest values:

v
y,l+ 1

2

i+ 1

2
,j

=

∑1

µ=0

∑1

ν=0
v

y,l+ 1

2

i+µ,j+ν− 1

2

4
(20a)

v
x,l+ 1

2

i,j+ 1

2

=

∑1

µ=0

∑1

ν=0
v

x,l+ 1

2

i+µ− 1

2
,j+ν

4
(20b)

4.4 Boundary condition

The whole purpose of the terrain FDTD is to model the
undulations of the terrain more accurately. It is obviously
necessary to implement an accurate terrain boundary con-
dition. To model a boundary with a locally reacting sur-
face impedance, the normal component of velocity has
to be known on the boundary. The normal vectorn for
a ground boundary condition is proportional to the con-
travariant base vectorAy:

n =
A

y

‖Ay‖
(21)

Using (11a), the normal component of velocity is found
to be directly proportional to the covariant velocity com-
ponent:

vn = v · n =
vx

‖Ay‖
(22)

It follows from this that a surface impedance boundary
condition cannot be directly implemented using equa-
tions (15), (17) and (19). A workaround using interpo-
lations can be carried out, but a more sustainable solution
is to transform the velocity equations to work on the co-
variant components of velocity instead.
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4.5 Covariant velocity equations

To transform the equation of thex component of velocity,
(17) is substituded in (19):
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This necessary velocity transformation is now embedded
in equation (23) which replaces both (17) and (19) in the
FDTD scheme.

5 Automatic grid window

The terrain FDTD has the additional advantage that it
is more easy to implement a moving grid window. Al-
though it is possible to use such a window with a regular
cartesian grid, the terrain FDTD has the benefit that the
window entirely moves through the propagating medium.
No tweaks to adjust the column length or the cell equa-
tion have to be applied.

When simulating propagation of pulse-like source sig-
nals, only a fragment of the grid and computation time
is usefully spended on propagating the pulse. A lot of
computational resources is wasted on computing zeros.
It is tempting to limit the grid to only surround the pulse
so that no resources are wasted. In long range simula-
tions, this is particulary easy because the pulse will be-
have much like a planar wave propagating horizontally,
after is has traveled some distance. A moving horizontal
window can be applied to surround the pulse more tightly.

Many implementations of moving grid windows use a
fixed window width that moves at constant speed across
the grid. The advantage is an easy implementation, even

when dynamic memory management is lacking. How-
ever, the disadvantages of this approach is that it doesn’t
allow for reflections, and the pulse width may exceed the
window width after some time.

In languages with dynamic memory management, an au-
tomatic window that automatically allocate grid columns
based on a pressure thresholdpmin can be used. When
a pressure value in a grid column exceedspmin, n ad-
ditional columns are activated on each side, to allow the
pressure field toleak into the new columns. A column is
deallocated when no pressure value is above the threshold
in the neighbourhood of2n + 1 columns.

The benefit of an automatic grid window is that it will
allocate as much columns as necessary to capture the
pulse. More importantly, it also is capable of capturing
reflections of the pulse on various objects. The window
can automatically be split two seperate windows mov-
ing in opposite directions. To seperate windows will also
merge automatically if window collision occurs. This is
all transparent to the algorithm.

6 Results

6.1 Comparison to refined cartesian FDTD
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Figure 1: setup of simulation for comparison of GTPE
and TFDTD

The terrain FDTD (TFDTD) is tested against a regular
cartesian FDTD with orthogonal grid. The sourceS and
receiverR are put at distance ofW = 20 m from each
other, and at a height ofH = 2 m above an undulating
surface, as in Figure 1. A sinusoidally shaped terrain is
used with wavelengthλg = 0.34 m and amplitude one
tenth of the wavelength:

h (x) =
λg

10
sin

2πx

λg

(25)
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The cellsize of the TFDTD is∆x1 = 0.02 m. CFDTD1
is a cartesian FDTD with the same cellsize of TFDTD.
CFDTD2 and CFDTD4 are cartesian FDTDs too with
a two and four times refined grid respectively (∆x2 =
0.01 m, ∆x4 = 0.005 m). TFDTD has the same mem-
ory requirements as CFDTD1 and is only slighty slower.
CFDTD2 and CFDTD4 consume respectively 4 and 16
more memory and are about 8 and 64 times slower.

Since the terrain is sinusoidally shaped, Bragg reflection
will occur. The wave number of the terrain undulations is
kg = 2π

λg

. Additional Bragg reflection orders will cut-in
at frequenciesfn:

fn =
c

2π

nkg

2
= 500n Hz (26)

Figure 2 compares simulation results. At low frequen-
cies, the ground interference dip is clearly observed. As
the cartesian grid is refined, CFDTD and TFDTD con-
verge to each other, but convergence is slow. The cut-in
at 500 Hz is well described by all numerical models. This
is not suprising since it solely depends on the periodicity
of the ground surface and not its fine structure.

6.2 Comparison to generalized terrain PE
method
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Figure 3: setup of simulation for comparison between
GTPE and TFDTD.

For comparison with generalized terrain PE, the same
setup is used as in [5], page 79. Figure 3 shows a hill
with a height ofH = 10 m and a length ofW = 250 m,
starting fromx0 = 50 m. It is composed of three circular
arcs with radiusR. The central arc is positioned between
x0+ W

4
andx0+ 3W

4
. The source receivers are positioned

every 10 m at an altitude of 2 m above the ground, which
is modeled as a perfectly reflecting surface.

R =
H

4
+

W 2

16H
(27)
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Figure 4: comparison of sound pressure level relative to
free field between GTPE and TFDTD.f = 300 Hz, b =
1 m/s,z0 = 0.1 m

Two situations are considered. The first has a non-moving
medium. In the second, a logarithmic wind profile in
function of the altitude above the ground is applied, with
b = 1 m/s andz0 = 0.1 m.

v0 (x, y) = b ln

(

y − h (x)

z0

+ 1

)

1x (28)

Figure 4 shows for both situations the relative sound pres-
sure level of frequencyf = 300 Hz, computed with ter-
rain FDTD (TFDTD) and generalized terrain PE (GTPE).
The agreement between the TFDTD and GTPE method is
very good. Though, it must be stressed that the example
is chosen for GTPE to work well. From this compari-
son however, we can get confidence that due to its nature
TFDTD may be also useable in more complex situations,
though this is to be confirmed with further experiments.

7 Conclusion

It is shown how the inhomogeneous moving medium
sound progatation equations can be implemented in
Finite-Difference Time-Domain (FDTD) using a struc-
tured skewed grid to follow the undulations of a terrain
h (x). The velocity equations are transformed to the
covariant base to make it easier to implement surface
impedance boundary conditions. An automatic grid win-
dow can reduce the computational resource for pulse-like
source signals while retaining reflections.

The terrain FDTD (TFDTD) is compared to both a re-
fined cartesian FDTD (CFDTD) and a generalized terrain
PE (GTPE) method. As CFDTD is refined, it slowly con-
verge to TFDTD which is as computational complex as
CFDTD1. The agreement between TFDTD and GTPE
method is very good.
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Figure 2: comparison of sound pressure level relative to free field between TFDTD and different refined CFDTDs. TFDTD
and CFDTD1:∆x = 0.02 m, CFDTD2:∆x = 0.01 m, CFDTD4:∆x = 0.005 m.
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