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Abstract

When writing a ray tracer, sooner or later you’ll stumble
on the problem of reflection and transmission. To visualize
mirror-like objects, you need to reflect your viewing rays. To
simulate a lens, you need refraction. While most people have
heard of the law of reflection and Snell’s law, they often have
difficulties with actually calculating the direction vectors of
the reflected and refracted rays. In the following pages, ex-
actly this problem will be addressed. As a bonus, some Fres-
nel equations will be added to the mix, so you can actually
calculate how much light is reflected or transmitted (yes, it’s
possible). At the end, you’ll have some usable formulas to use
in your latest ray tracer.

1 Introduction
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Figure 1: the situation

In Figure 1 we have an interface (= surface) between two ma-
terials with different refractive indices η1 and η2. These two

materials could be air (η ≈ 1), water (20◦C: η ≈ 1.33), glass
(crown glass: η ≈ 1.5), ... It does not matter which refractive
index is the greatest. All that counts is that η1 is the refractive
index of the material you come from, and η2 of the material
you go to. This (very important) concept is sometimes misun-
derstood.

The direction vector of the incident ray (= incoming ray) is i,
and we assume this vector is normalized. The direction vec-
tors of the reflected and transmitted rays are r and t and will
be calculated. These vectors are (or will be) normalized as
well. We also have the normal vector n, orthogonal to the in-
terface and pointing towards the first material η1. Again, n is
normalized.

|i| = |r| = |t| = |n| = 1 (1)

The direction vectors of the rays can be split in components
orthogonal and parallel to the interface. We call these the nor-
mal v⊥ and the tangential component v‖ of a vector v (in this
paragraph I’ll use a generic vector v, but the story really is for
i, r and t). The normal part v⊥ can be found by orthogonal
projection[2] on n. Taking (1) into account, we have:

v⊥ =
v ·n
|n|2 n = (v ·n)n (2a)

The tangent part v‖ is the difference between v and v⊥:

v‖ = v−v⊥ (2b)

The dot product between v‖ and v⊥ is zero:

v‖ ·v⊥ = v ·v⊥ −v⊥ ·v⊥
= v · (v ·n)n− (v ·n)2 n ·n
= (v ·n)2 − (v ·n)2 |n|2
= 0 (3)

That proves two things: v⊥ and v‖ are orthogonal, and v⊥ is
indeed an orthogonal projection of v on n.

v⊥ ⊥ v‖ (4)

Hence, we can apply Pythagoras:

|v|2 =
∣∣v‖∣∣2 + |v⊥|2 (5)
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Furthemore, all normal parts are parallel to each other and n.
The tangent parts are parallel as well.

i⊥ ‖ r⊥ ‖ t⊥ ‖ n (6a)

i‖ ‖ r‖ ‖ t‖ (6b)

The angles of incidence, reflection and refraction are θi, θr

and θt . They are the smallest positive angles between the re-
spective rays and the normal vector n. Basic trigonometry and
equations (1) and (4) tell us the following properties apply for
any of this angles θv:

cosθv = |v⊥|
|v| = |v⊥| (7a)

sinθv = |v‖|
|v| =

∣∣v‖∣∣ (7b)

In fact, (7a) says nothing else than∗:

cosθv = ±v ·n (8)

Now we have all that settled, we can start with the fun stuff.

2 Reflection

We start with the easiest of both problems: the calculation of
the reflected ray. In case of specular reflection, this is very
easy: the law of reflection says that the angle of incidence θi

is equal to the angle of reflection θr [1].

θr = θi (9)

Using equations (7a) and (7b), this law tells us:

|r⊥| = cosθr = cosθi = |i⊥| (10a)∣∣r‖∣∣ = sinθr = sinθi =
∣∣i‖∣∣ (10b)

Because of (6a) and (6b) and Figure 1, we can figure out that
both parts are:

r⊥ = −i⊥ (11a)

r‖ = i‖ (11b)

After summation, we get the desired direction:

r = r‖ +r⊥ = i‖ − i⊥ (12)

By using equations (2a) and (2b), we can work this out to:

r = i‖ − i⊥
= [i− (i ·n)n]− (i ·n)n

= i−2(i ·n)n (13)

That’s it! But can we be sure r calculated in (13) is normalized
as requested? Yes, using (5), (10a), (10b) and (1) we have:

|r|2 =
∣∣r‖∣∣2 + |r⊥|2 =

∣∣i‖∣∣2 + |i⊥|2 = |i|2 = 1 (14)

And that’s very cool, since we can avoid a costly normalisa-
tion.

∗The actual sign in (8) depends on the relative orientation of v and
n, because θv must be positive.

3 Refraction

The calculation of the refracted ray starts with Snell’s law [1]
which tells that the products of the refractive indices and sines
of the angles must be equal:

η1 sinθi = η2 sinθt (15)

You can write this as:

sinθt =
η1

η2
sinθi (16)

With this equation, you can already see there’s a bit of a prob-
lem when sinθ1 > η2

η1
. If that’s the case, sinθ2 would have to

be greater than 1. BANG! That’s not possible. What we’ve
just found is total internal reflection or TIR [1]. What ex-
actly TIR is will be addressed later. For now, we’ll just add a
condition to our law:

sinθt =
η1

η2
sinθi ⇔ sinθi ≤ η2

η1
(17)

In the further part of this section, we’ll assume this condition
is fullfilled so we don’t have to worry about it.

Fine, we know the theory now, we should try to find a formula
for t. This first thing we’ll do is to split it up in a tangent and
normal part:

t = t‖ + t⊥ (18)

Of both parts, we’ll do t‖ first, because Snell’s law tells us
something about sines and the norms of the tangent parts hap-
pen to be equal to sines. Hence, because of (7b) and (17), we
can write: ∣∣t‖∣∣ =

η1

η2

∣∣i‖∣∣ (19)

Since t‖ and i‖ are parallel and point in the same direction,
this becomes:

t‖ =
η1

η2
i‖ =

η1

η2
[i+cos θin] (20a)

Don’t worry about the cosθi, later on it will make things easier
if we just leave it there. If you need it, you can easily calculate
it with (8), it equals i ·n.

Great, so we have one part already (it’s not that bad, is it?
;-). Now the other. That’s equally simple if you use Pythago-
ras (5) and the knowledge that we’re dealing with normalized
vectors (1):

t⊥ = −
√

1− ∣∣t‖∣∣2n (20b)

Once we have both parts, it’s time to substitute them in (18)
to get t. If we do that and we regroup a little so we get only
one term in n, we get (hold on!):

t =
η1

η2
i+

(
η1

η2
cosθi −

√
1− ∣∣t‖∣∣2

)
n (21)
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It’s a bit unfortunate we still need t‖ under the square root.
Luckely, we don’t really need the vector t‖, but its norm which
equals sinθt (7b). We get:

t =
η1

η2
i+

(
η1

η2
cosθi −

√
1− sin2 θt

)
n (22)

Now we need sin2 θt instead, but we know that’s given by
Snell’s law (15):

sin2 θt =
(

η1

η2

)2

sin2 θi =
(

η1

η2

)2 (
1−cos2 θi

)
(23)

The last two equations are all we need to calculate the re-
fracted direction vector.

4 Critical angle

If we take a closer look to equation (22), you will notice it’s
only valid if the value under the square root isn’t negative. At
first glance, that seems to be a second condition next to the
one in Snell’s law (17). Take a closer look however, and see
this new condition means:

sin2 θt ≤ 1 (24)

That’s exactly the same as the original condition. Isn’t that
beautiful? In two completely different situations, we have no-
ticed restrictions on the equations. And yet, it turns out they’re
one and the same.

Anyway, if this condition is not fullfilled, we can’t find a re-
fracted direction vector. That means we can’t do transmis-
sion: if the condition isn’t fullfilled, there’s no transmission.
We have total internal reflection or TIR. The incoming angle
at which this happens is called the critical angle θc [1]. From
(15) follows this angle is given by:

θc = arcsin
η2

η1
⇔ η1 > η2 (25)

5 Total internal reflection and
Fresnel equations

Why exactly is this called total internal reflection, and why is
it called a reflection while it’s a restriction for refraction?

First of all you have to know something about the physics of
light. Each photon (= a packet of light) that arrives at the in-
terface in direction i has two options: it can either go through
the interface by following direction t (transmission), or it can
go back by following direction r (reflection). Of all photons
arriving at the interface, one part is reflected and the other is

transmitted. The former part is given by the transmittance T ,
the latter by the reflectance R:

T +R = 1 (26)

Of course, the amount of photons reflected or transmitted is
not randomly choosen. It depends on the refractive indices η1

and η2, but also on the angle θi in which they arrive at this sur-
face. How exactly is described by the Fresnel equations [1].
These give the ratio of the reflected and transmitted electric
field amplitude to initial electric field for electromagnetic ra-
diation incident on a dielectric ...

OK, now I’ve scared you. Well, let me say you this: light
is an electromagnetic wave and it has such an electric field
too. Thus, the Fresnel equations equations apply to light as
well. However, they’re not very well suited to our problem
as they consider the polarisation of light (or electromagnetic
waves in general)†. You might have heard about polarized
light before, in case of polaroid sun glasses for example. Here
are the refectance equations for both polarisations [1]:

R⊥ (θi) =
(

η1 cosθi −η2 cosθt

η1 cosθi +η2 cosθt

)2

(27a)

R‖ (θi) =
(

η2 cosθi −η1 cosθt

η2 cosθi +η1 cosθt

)2

(27b)

In these equations, cosθt is used which is easily found using
the result of equation (23):

cosθt =
√

1− sin2 θt (28)

While it might be interesting to respect the polarisation in a
ray tracer to achieve some specific effects, most ray tracers
– to our relief – don’t. Instead, they conveniently assume all
light is unpolarised. To do that, they simply take the aver-
age of both polarisations. We’re going to make the same ap-
proximation. Subsequently, we have for the reflectance and
transmittance:

R(θi) =

{
R⊥(θi)+R‖(θi)

2 ⇔¬TIR
1 ⇔ TIR

(29a)

T (θi) = 1−R(θi) (29b)

So, what does this buy us? I’ve made plots of R(θi) and T (θi)
for both cases: η1 < η2 in Figure 2 and η1 > η2 in Figure 3.
On the x axis we have the angle of incidence θi going from
0◦ to 90◦, or from perpendicular to grazing incidence. In both
cases R increases with θi (and accordingly, T decreases).

This agrees with what we experience in nature. Suppose we
stand by a lake. If you look down, you’ll be able to see

†When light hits an interface, it can to be decomposed in two parts:
in one part the electric field is parallel to the interface, in the other it
is orthogonal. They call this respectively the transverse electric field
(TE) and transverse magnetic field (TM).

3



0 10 20 30 40 50 60 70 80 90
iθ

0

0.2

0.4

0.6

0.8

1
1 2 33.1=η,1=η

reflectance
transmittance

2kcilhcSR

Figure 2: to a denser material: η1 < η2
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Figure 3: from a denser material: η1 > η2

through the water (perpendicular view, transmittance is high).
But if you look into the distance, the water surface will reflect
the sky (grazing view, reflectance is high). This is the situa-
tion of Figure 2, the reflectance gradually increases to 1 when
we look more parallel to the surface.

Figure 3 corresponds to looking from beneath the water sur-
face (think swimmingpool :-). Again, if you look straight up,
you’re able to see through the surface. But this time, the re-
flectance increases much faster. It even hits the maximum of
100% before θi reaches 90◦. Not entirely by coincidence, the
point at which this happens is exactly the critical angle θc.
The reflectance can no longer increase (it can’t reflect more
than 100%, can it?), and transmittance has dropped to zero.
From that angle, there’s no longer any transmission, only to-
tal reflection. And since the point of view is inside the denser
material, we call it total internal reflection. Huray ...

Schlick’s approximation

This article wouldn’t be complete without mentioning well
known Schlick’s approximation of the Fresnel equation [3].
He proposes the following equation for reflectance:

RSchlick (θi) = R0 +(1−R0)(1−cos θi)
5 (30)

with

R0 =
(

η1 −η2

η1 +η2

)2

(31)

However, this approximation fails to model the reflectance
when η1 > η2. In fact, if you swap η1 and η2, you get ex-
actly the same result. This problem is easily fixed by using
cosθt instead of cosθi when η1 > η2. Of course, in case of
TIR, you must return 1.‡

RSchlick2 (θi) =⎧⎨
⎩

R0 +(1−R0)(1−cos θi)
5 ⇔ η1 ≤ η2

R0 +(1−R0)(1−cos θt)
5 ⇔ η1 > η2 ∧¬TIR

1 ⇔ η1 > η2 ∧TIR
(32)

The adapted Schlick approximation is about 30% faster than
the unpolarized Fresnel equation if you avoid the costly
��� function (if you don’t it’s twice as slow). I’ve added
RSchlick2 (θi) to Figure 2 and 3 to show how reasonable it
works if η1 and η2 don’t differ too much. In Figure 4 you
can see how the approximation fails if η2 increases. However,
this situation is not often found in practice. It’s up to you to
decide which reflectance equation you use.

And here the story ends.

‡If anyone knows if this extension is mentioned before and where
I can find it, please let me know so I can add a reference to it.
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Figure 4: increased η2

6 Conclusion

We have derived two equations to calculate the reflected and
refracted direction vectors by using vector arithmetic only:

r = i+2cos θin

t =
η1

η2
i+

(
η1

η2
cosθi −

√
1− sin2 θt

)
n

with

cosθi = −i ·n

sin2 θt =
(

η1

η2

)2 (
1−cos2 θi

)
In case η1 > η2, there’s a limit on θi above which there’s no
longer transmission. Above this this limit, t does not exist.
This is called total internal reflection. This limit is called the
critical angle θc and is given by:

θc = arcsin
η2

η1
⇔ η1 > η2

We’ve shown a usable Fresnel equation to calculate the re-
flectance and transmittance depending on the θi.

R(θi) =
R⊥ (θi)+R‖ (θi)

2
T (θi) = 1−R(θi)

with

R⊥ (θi) =
(

η1 cosθi −η2 cosθt

η1 cosθi +η2 cosθt

)2

R‖ (θi) =
(

η2 cosθi −η1 cosθt

η2 cosθi +η1 cosθt

)2

cosθt =
√

1− sin2 θt

(33)
We’ve also provided an alternative equation for R(θi) by ex-
tending Schlick’s approximation:

RSchlick2 (θi) =⎧⎨
⎩

R0 +(1−R0)(1−cos θi)5 ⇔ η1 ≤ η2

R0 +(1−R0)(1−cos θt)
5 ⇔ η1 > η2 ∧¬TIR

1 ⇔ η1 > η2 ∧TIR
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